Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Clin Infect Dis ; 76(11): 2018-2024, 2023 Jun 08.
Article in English | MEDLINE | ID: covidwho-2228195

ABSTRACT

Coronavirus disease 2019 (COVID-19) convalescent plasma (CCP) is a safe and effective treatment for COVID-19 in immunocompromised (IC) patients. IC patients have a higher risk of persistent infection, severe disease, and death from COVID-19. Despite the continued clinical use of CCP to treat IC patients, the optimal dose, frequency/schedule, and duration of CCP treatment has yet to be determined, and related best practices guidelines are lacking. A group of individuals with expertise spanning infectious diseases, virology and transfusion medicine was assembled to render an expert opinion statement pertaining to the use of CCP for IC patients. For optimal effect, CCP should be recently and locally collected to match circulating variant. CCP should be considered for the treatment of IC patients with acute and protracted COVID-19; dosage depends on clinical setting (acute vs protracted COVID-19). CCP containing high-titer severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies, retains activity against circulating SARS-CoV-2 variants, which have otherwise rendered monoclonal antibodies ineffective.


Subject(s)
COVID-19 , Humans , COVID-19/therapy , SARS-CoV-2 , COVID-19 Serotherapy , Immunocompromised Host , Immunization, Passive , Antibodies, Viral/therapeutic use
2.
Ann Intern Med ; 175(9): 1310-1321, 2022 09.
Article in English | MEDLINE | ID: covidwho-1994458

ABSTRACT

DESCRIPTION: Coronavirus disease 2019 convalescent plasma (CCP) has emerged as a potential treatment of COVID-19. However, meta-analysis data and recommendations are limited. The Association for the Advancement of Blood and Biotherapies (AABB) developed clinical practice guidelines for the appropriate use of CCP. METHODS: These guidelines are based on 2 living systematic reviews of randomized controlled trials (RCTs) evaluating CCP from 1 January 2019 to 26 January 2022. There were 33 RCTs assessing 21 916 participants. The results were summarized using the GRADE (Grading of Recommendations Assessment, Development and Evaluation) method. An expert panel reviewed the data using the GRADE framework to formulate recommendations. RECOMMENDATION 1 (OUTPATIENT): The AABB suggests CCP transfusion in addition to the usual standard of care for outpatients with COVID-19 who are at high risk for disease progression (weak recommendation, moderate-certainty evidence). RECOMMENDATION 2 (INPATIENT): The AABB recommends against CCP transfusion for unselected hospitalized persons with moderate or severe disease (strong recommendation, high-certainty evidence). This recommendation does not apply to immunosuppressed patients or those who lack antibodies against SARS-CoV-2. RECOMMENDATION 3 (INPATIENT): The AABB suggests CCP transfusion in addition to the usual standard of care for hospitalized patients with COVID-19 who do not have SARS-CoV-2 antibodies detected at admission (weak recommendation, low-certainty evidence). RECOMMENDATION 4 (INPATIENT): The AABB suggests CCP transfusion in addition to the usual standard of care for hospitalized patients with COVID-19 and preexisting immunosuppression (weak recommendation, low-certainty evidence). RECOMMENDATION 5 (PROPHYLAXIS): The AABB suggests against prophylactic CCP transfusion for uninfected persons with close contact exposure to a person with COVID-19 (weak recommendation, low-certainty evidence). GOOD CLINICAL PRACTICE STATEMENT: CCP is most effective when transfused with high neutralizing titers to infected patients early after symptom onset.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/therapy , Hospitalization , Humans , Immunization, Passive/methods , COVID-19 Serotherapy
4.
PLoS Med ; 18(12): e1003872, 2021 12.
Article in English | MEDLINE | ID: covidwho-1581903

ABSTRACT

BACKGROUND: The United States (US) Expanded Access Program (EAP) to coronavirus disease 2019 (COVID-19) convalescent plasma was initiated in response to the rapid spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19. While randomized clinical trials were in various stages of development and enrollment, there was an urgent need for widespread access to potential therapeutic agents. The objective of this study is to report on the demographic, geographical, and chronological characteristics of patients in the EAP, and key safety metrics following transfusion of COVID-19 convalescent plasma. METHODS AND FINDINGS: Mayo Clinic served as the central institutional review board for all participating facilities, and any US physician could participate as a local physician-principal investigator. Eligible patients were hospitalized, were aged 18 years or older, and had-or were at risk of progression to-severe or life-threatening COVID-19; eligible patients were enrolled through the EAP central website. Blood collection facilities rapidly implemented programs to collect convalescent plasma for hospitalized patients with COVID-19. Demographic and clinical characteristics of all enrolled patients in the EAP were summarized. Temporal patterns in access to COVID-19 convalescent plasma were investigated by comparing daily and weekly changes in EAP enrollment in response to changes in infection rate at the state level. Geographical analyses on access to convalescent plasma included assessing EAP enrollment in all national hospital referral regions, as well as assessing enrollment in metropolitan areas and less populated areas that did not have access to COVID-19 clinical trials. From April 3 to August 23, 2020, 105,717 hospitalized patients with severe or life-threatening COVID-19 were enrolled in the EAP. The majority of patients were 60 years of age or older (57.8%), were male (58.4%), and had overweight or obesity (83.8%). There was substantial inclusion of minorities and underserved populations: 46.4% of patients were of a race other than white, and 37.2% of patients were of Hispanic ethnicity. Chronologically and geographically, increases in the number of both enrollments and transfusions in the EAP closely followed confirmed infections across all 50 states. Nearly all national hospital referral regions enrolled and transfused patients in the EAP, including both in metropolitan and in less populated areas. The incidence of serious adverse events was objectively low (<1%), and the overall crude 30-day mortality rate was 25.2% (95% CI, 25.0% to 25.5%). This registry study was limited by the observational and pragmatic study design that did not include a control or comparator group; thus, the data should not be used to infer definitive treatment effects. CONCLUSIONS: These results suggest that the EAP provided widespread access to COVID-19 convalescent plasma in all 50 states, including for underserved racial and ethnic minority populations. The study design of the EAP may serve as a model for future efforts when broad access to a treatment is needed in response to an emerging infectious disease. TRIAL REGISTRATION: ClinicalTrials.gov NCT#: NCT04338360.


Subject(s)
COVID-19/therapy , Compassionate Use Trials/methods , Health Services Needs and Demand/statistics & numerical data , Hospital Distribution Systems/organization & administration , Registries , Transfusion Reaction/complications , Transfusion Reaction/epidemiology , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/epidemiology , Ethnic and Racial Minorities , Female , Humans , Immunization, Passive/adverse effects , Immunization, Passive/methods , Inpatients , Male , Medically Underserved Area , Middle Aged , Pandemics , Patient Safety , SARS-CoV-2 , Treatment Outcome , United States , COVID-19 Serotherapy
5.
Vox Sang ; 116(7): 766-773, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1573880

ABSTRACT

BACKGROUND AND OBJECTIVES: ABO blood group may affect risk of SARS-CoV-2 infection and/or severity of COVID-19. We sought to determine whether IgG, IgA and neutralizing antibody (nAb) to SARS-CoV-2 vary by ABO blood group. MATERIALS AND METHODS: Among eligible convalescent plasma donors, ABO blood group was determined via agglutination of reagent A1 and B cells, IgA and IgG were quantified using the Euroimmun anti-SARS-CoV-2 ELISA, and nAb titres were quantified using a microneutralization assay. Differences in titre distribution were examined by ABO blood group using non-parametric Kruskal-Wallis tests. Adjusted prevalence ratios (aPR) of high nAb titre (≥1:160) were estimated by blood group using multivariable modified Poisson regression models that adjusted for age, sex, hospitalization status and time since SARS-CoV-2 diagnosis. RESULTS: Of the 202 potential donors, 65 (32%) were blood group A, 39 (19%) were group B, 13 (6%) were group AB, and 85 (42%) were group O. Distribution of nAb titres significantly differed by ABO blood group, whereas there were no significant differences in anti-spike IgA or anti-spike IgG titres by ABO blood group. There were significantly more individuals with high nAb titre (≥1:160) among those with blood group B, compared with group O (aPR = 1·9 [95%CI = 1·1-3·3], P = 0·029). Fewer individuals had a high nAb titre among those with blood group A, compared with group B (aPR = 0·6 [95%CI = 0·4-1·0], P = 0·053). CONCLUSION: Eligible CCP donors with blood group B may have relatively higher neutralizing antibody titres. Additional studies evaluating ABO blood groups and antibody titres that incorporate COVID-19 severity are needed.


Subject(s)
ABO Blood-Group System , COVID-19 , Antibodies, Viral , Antibody Formation , Blood Donors , COVID-19/therapy , COVID-19 Testing , Humans , Immunization, Passive , SARS-CoV-2 , COVID-19 Serotherapy
6.
Front Med (Lausanne) ; 8: 684151, 2021.
Article in English | MEDLINE | ID: covidwho-1282395

ABSTRACT

Convalescent plasma has been used worldwide to treat patients hospitalized with coronavirus disease 2019 (COVID-19) and prevent disease progression. Despite global usage, uncertainty remains regarding plasma efficacy, as randomized controlled trials (RCTs) have provided divergent evidence regarding the survival benefit of convalescent plasma. Here, we argue that during a global health emergency, the mosaic of evidence originating from multiple levels of the epistemic hierarchy should inform contemporary policy and healthcare decisions. Indeed, worldwide matched-control studies have generally found convalescent plasma to improve COVID-19 patient survival, and RCTs have demonstrated a survival benefit when transfused early in the disease course but limited or no benefit later in the disease course when patients required greater supportive therapies. RCTs have also revealed that convalescent plasma transfusion contributes to improved symptomatology and viral clearance. To further investigate the effect of convalescent plasma on patient mortality, we performed a meta-analytical approach to pool daily survival data from all controlled studies that reported Kaplan-Meier survival plots. Qualitative inspection of all available Kaplan-Meier survival data and an aggregate Kaplan-Meier survival plot revealed a directionally consistent pattern among studies arising from multiple levels of the epistemic hierarchy, whereby convalescent plasma transfusion was generally associated with greater patient survival. Given that convalescent plasma has a similar safety profile as standard plasma, convalescent plasma should be implemented within weeks of the onset of future infectious disease outbreaks.

7.
Mayo Clin Proc ; 96(5): 1262-1275, 2021 05.
Article in English | MEDLINE | ID: covidwho-1219471

ABSTRACT

To determine the effect of COVID-19 convalescent plasma on mortality, we aggregated patient outcome data from 10 randomized clinical trials, 20 matched control studies, 2 dose-response studies, and 96 case reports or case series. Studies published between January 1, 2020, and January 16, 2021, were identified through a systematic search of online PubMed and MEDLINE databases. Random effects analyses of randomized clinical trials and matched control data demonstrated that patients with COVID-19 transfused with convalescent plasma exhibited a lower mortality rate compared with patients receiving standard treatments. Additional analyses showed that early transfusion (within 3 days of hospital admission) of higher titer plasma is associated with lower patient mortality. These data provide evidence favoring the efficacy of human convalescent plasma as a therapeutic agent in hospitalized patients with COVID-19.


Subject(s)
COVID-19/therapy , COVID-19/mortality , Humans , Immunization, Passive/methods , Mortality , SARS-CoV-2/immunology , Time-to-Treatment , COVID-19 Serotherapy
9.
Med (N Y) ; 1(1): 66-77, 2020 12 18.
Article in English | MEDLINE | ID: covidwho-988791

ABSTRACT

Antibody-based therapy for infectious diseases predates modern antibiotics and, in the absence of other therapeutic options, was deployed early in the SARS-CoV-2 pandemic through COVID-19 convalescent plasma (CCP) administration. Although most studies have demonstrated signals of efficacy for CCP, definitive assessment has proved difficult under pandemic conditions, with rapid changes in disease incidence and the knowledge base complicating the design and implementation of randomized controlled trials. Nevertheless, evidence from a variety of studies demonstrates that CCP is as safe as ordinary plasma and strongly suggests that it can reduce mortality if given early and with sufficient antibody content.


Subject(s)
COVID-19 , COVID-19/therapy , Humans , Immunization, Passive , Pandemics , SARS-CoV-2 , COVID-19 Serotherapy
10.
J Clin Invest ; 130(6): 2757-2765, 2020 06 01.
Article in English | MEDLINE | ID: covidwho-38467

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the cause of coronavirus disease 2019 (COVID-19), has spurred a global health crisis. To date, there are no proven options for prophylaxis for those who have been exposed to SARS-CoV-2, nor therapy for those who develop COVID-19. Immune (i.e., "convalescent") plasma refers to plasma that is collected from individuals following resolution of infection and development of antibodies. Passive antibody administration through transfusion of convalescent plasma may offer the only short-term strategy for conferring immediate immunity to susceptible individuals. There are numerous examples in which convalescent plasma has been used successfully as postexposure prophylaxis and/or treatment of infectious diseases, including other outbreaks of coronaviruses (e.g., SARS-1, Middle East respiratory syndrome [MERS]). Convalescent plasma has also been used in the COVID-19 pandemic; limited data from China suggest clinical benefit, including radiological resolution, reduction in viral loads, and improved survival. Globally, blood centers have robust infrastructure for undertaking collections and constructing inventories of convalescent plasma to meet the growing demand. Nonetheless, there are nuanced challenges, both regulatory and logistical, spanning donor eligibility, donor recruitment, collections, and transfusion itself. Data from rigorously controlled clinical trials of convalescent plasma are also few, underscoring the need to evaluate its use objectively for a range of indications (e.g., prevention vs. treatment) and patient populations (e.g., age, comorbid disease). We provide an overview of convalescent plasma, including evidence of benefit, regulatory considerations, logistical work flow, and proposed clinical trials, as scale-up is brought underway to mobilize this critical resource.


Subject(s)
Betacoronavirus , Coronavirus Infections/prevention & control , Coronavirus Infections/therapy , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Pneumonia, Viral/therapy , Antibodies, Viral/administration & dosage , Antibodies, Viral/blood , Antibodies, Viral/therapeutic use , Betacoronavirus/immunology , Blood Donors , COVID-19 , Coronavirus Infections/blood , Coronavirus Infections/epidemiology , Coronavirus Infections/immunology , Humans , Immunization, Passive/adverse effects , Investigational New Drug Application , Pneumonia, Viral/epidemiology , Risk Assessment , SARS-CoV-2 , United States , United States Food and Drug Administration , COVID-19 Serotherapy
SELECTION OF CITATIONS
SEARCH DETAIL